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Summary. The paper develops a new estimation of non-parametric regression functions for
clustered or longitudinal data. We propose to use Cholesky decomposition and profile least
squares techniques to estimate the correlation structure and regression function simultaneously.
We further prove that the estimator proposed is as asymptotically efficient as if the covariance
matrix were known. A Monte Carlo simulation study is conducted to examine the finite sam-
ple performance of the procedure proposed, and to compare the procedure with the existing
procedures. On the basis of our empirical studies, the newly proposed procedure works better
than naive local linear regression with working independence error structure and the gain in
efficiency can be achieved in moderate-sized samples. Our numerical comparison also shows
that the newly proposed procedure outperforms some existing procedures. A real data set appli-
cation is also provided to illustrate the estimation procedure proposed.
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1. Introduction

For clustered or longitudinal data, we know that the data that are collected from the same
subject at different times are correlated and that observations from different subjects are often
independent. Therefore, it is of great interest to estimate the regression function incorporating
the within-subject correlation to improve the efficiency of estimation. This issue has been well
studied for parametric regression models in the literature. See, for example, the generalized
method of moments (Hansen, 1982), the generalized estimating equation (GEE) (Liang and
Zeger, 1986) and quadratic inference function (Qu et al., 2000).

Parametric regression generally has simple and intuitive interpretations and provides a parsi-
monious description of the relationship between the response variable and its covariates. How-
ever, these strong assumption models may introduce modelling biases and lead to erroneous
conclusions when there is model misspecification. In this paper, we focus on the non-parametric
regression model for longitudinal data. Suppose that {.xij, yij/, i = 1, . . . , n, j = 1, . . . , Ji} is a
random sample from the non-parametric regression model

yij =m.xij/+ "ij, .1/
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where m.·/ is a non-parametric smoothing function, and "ij is a random error. Here .xij, yij/

is the jth observation of the ith subject or cluster. Thus, .xij, yij/, j = 1, . . . , Ji, are correlated.
There has been substantial research interest in developing non-parametric estimation proce-
dures for m.·/ under the setting of clustered or longitudinal data. Lin and Carroll (2000)
proposed the kernel GEE, an extension of the parametric GEE, for model (1) and showed
that the kernel GEE works the best without incorporating within-subject correlation. Wang
(2003) proposed the marginal kernel method for longitudinal data and proved its efficiency by
incorporating the true correlation structure. She also demonstrated that the marginal kernel
method using the true correlation structure results in more efficient estimates than Lin and
Carroll’s (2000) kernel GEE. Linton et al. (2003) proposed a two-stage estimator to incorpo-
rate the correlation by using a linear transformation to transform the correlated data model
into an uncorrelated data model if the working covariance matrix is known (up to some un-
known parameters). They proved that their estimator has asymptotically smaller mean-squared
error than the regular working independence kernel estimator if the preliminary estimate is
undersmoothed.

In this paper, we propose a new procedure to estimate the correlation structure and regres-
sion function simultaneously, based on the Cholesky decomposition and profile least squares
techniques. We derive the asymptotic bias and variance, and establish the asymptotic normality
of the resulting estimator. We further conduct some theoretical comparisons. We show that
the newly proposed procedure is more efficient than Lin and Carroll’s (2000) kernel GEE. In
addition, we prove that the estimator proposed is as asymptotically efficient as if the true covari-
ance matrix were known a priori. Compared with the marginal kernel method of Wang (2003)
and Linton et al. (2003), the newly proposed procedure does not require the specification of a
working correlation structure. This has appeal in practice because the true correlation struc-
ture is typically unknown. Monte Carlo simulation studies are conducted to examine the finite
sample performance of the procedure proposed, and to compare the procedure proposed with
the existing procedures. Results from our empirical studies suggest that the newly proposed
procedure performs better than naive local linear regression and the gain in efficiency can be
achieved in moderate-sized samples. We further conduct Monte Carlo simulation to compare
the newly proposed procedure with the procedures that were proposed by Lin and Carroll
(2000), Wang (2003), Chen and Jin (2005), Lin and Carroll (2006) and Chen et al. (2008). This
numerical comparison shows that the newly proposed procedure may outperform the exist-
ing procedures. We illustrate the proposed estimation method with an analysis of a real data
set.

The remainder of this paper is organized as follows. In Section 2, we introduce the new esti-
mation procedure based on the profile least squares and the Cholesky decomposition. We then
provide asymptotic results for the estimator proposed. Finally, we present a numerical compar-
ison and analysis of a real data example in Section 3. The proofs and the regularity conditions
are given in Appendix A.

2. New estimation procedures

For ease of presentation, let us start with balanced longitudinal data. We shall discuss how to
use Cholesky composition to incorporate the within-subject correlation into the local estima-
tion procedures for unbalanced longitudinal data in Section 2.2. Suppose that {.xij, yij/, i =
1, . . . , n, j =1, . . . , J} is a random sample from model (1). In this paper, we shall consider uni-
variate xij. The newly proposed procedures are applicable for multivariate xij but are less useful
practically because of the ‘curse of dimensionality’.
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Let εi = ."i1, . . . , "iJ /T and xi = .xi1, . . . , xiJ /. Suppose that cov.εi|xi/=Σ. On the basis of the
Cholesky decomposition, there is a lower triangle matrix Φ with 1s on the main diagonal such
that

cov.Φεi/=ΦΣΦT =D,

where D is a diagonal matrix. In other words, we have

εi1 = ei1,

εij =φj,1"i,1 + . . . +φj,j−1"i,j−1 + eij, i=1, . . . , n, j =2, . . . , J ,

where ei = .ei1, . . . , eiJ /T =Φεi, and φj,l is the negative of the .j, l/-element of the Φ. Let D =
diag.d2

1 , . . . , d2
J /. Since D is a diagonal matrix, the e′

ijs are uncorrelated and var.eij/ = d2
j , j =

1, . . . , J . If {ε1, . . . , εn} were available, then we would work on the following partially linear
model with uncorrelated error term e′

ij:

yi1 =m.xi1/+ ei1,

yij =m.xij/+φj,1"i,1 + . . . +φj,j−1"i,j−1 + eij, i=1, . . . , n, j =2, . . . , J: .2/

However, in practice, "ij is not available, but it may be predicted by "̂ij = yij − m̂I.xij/, where
m̂I.xij/ is a local linear estimate of m.·/ based on model (1) pretending that the random error "′

ijs
are independent. As shown in Lin and Carroll (2000), m̂I.x/ under the working independence
structure is a consistent estimate of m.x/.

Replacing the "′
ijs in model (2) with "̂′

ijs, we have

yij ≈m.xij/+φj,1"̂i,1 + . . . +φj,j−1"̂i,j−1 + eij, i=1, . . . , n, j =2, . . . , J: .3/

Let Y = .y12, . . . , y1J , . . . , ynJ /T, X = .x12, . . . , x1J , . . . , xnJ /T, φ = .φ21, . . . , φJ ,J−1/T, e =
.e12, . . . , enJ /T and F̂ij = .0T

.j−2/.j−1/=2, "̂i,1, . . . , "̂i,j−1, 0T
.J−1/J=2−.j−1/j=2/T, where 0k is the k-

dimension column vector with all entries 0. Then we can rewrite model (3) with the following
matrix format:

Y ≈m.X/+ F̂aφ+ e, .4/

where m.X/ = .m.x12/, . . . , m.x1J /, . . . , m.xnJ //T and F̂a = .F̂12, . . . , F̂1J , . . . , F̂nJ /T. Let YÅ =
Y − F̂aφ. Then

YÅ ≈m.X/+ e: .5/

Note that the eijs in e are uncorrelated. Therefore, if Σ and thus φ are known, we can use the
Cholesky decomposition to transform the correlated data model (1) to the uncorrelated data
model (5) with the new response YÅ.

For partial linear model (4), various estimation methods have been proposed. In this paper,
we shall employ the profile least squares techniques (Fan and Li, 2004) to estimate φ and m.·/
in approximation (4).

2.1. Profile least squares estimate
Noting that model (5) is a one-dimensional non-parametric model, given φ, we may employ
existing linear smoothers, such as local polynomial regression (Fan and Gijbels, 1996) and
smoothing splines (Gu, 2002) to estimate m.x/. Here, we employ local linear regression.

Let

Ax0 =
(

1 . . . 1 . . . 1
x12 −x0 . . . x1J −x0 . . . xnJ −x0

)T

,
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and

Wx0 =diag{Kh.x12 −x0/=d̂
2
1, . . . , Kh.x1J −x0/=d̂

2
J , . . . , Kh.xnJ −x0/=d̂

2
J},

where Kh.t/=h−1 K.t=h/, K.·/ is a kernel function and h is the bandwidth, and d̂j is any con-
sistent estimate of dj, the standard deviation of e1j. Denote by m̂.x0/ the local linear regression
estimate of m.x0/. Then

m̂.x0/= β̂0 = [1, 0].AT
x0

Wx0Ax0/−1AT
x0

Wx0 YÅ:

Note that m̂.x0/ is a linear combination of YÅ. Let Sh.x0/= [1, 0].AT
x0

Wx0 Ax0/−1AT
x0

Wx0 . Then
m̂.X/ can be represented by

m̂.X/=Sh.X/YÅ,

where Sh.X/ is a .J − 1/n× .J − 1/n smoothing matrix, depending on X and the bandwidth h
only. Substituting m.X/ in model (5) by m̂.X/, we obtain the linear regression model

.I −Sh.X// Y = .I −Sh.X// F̂aφ+ e,

where I is the identity matrix. Let

Ĝ =diag.d̂
2
2, . . . , d̂

2
J , . . . , d̂

2
2, . . . , d̂

2
J /:

Then, the profile least squares estimator for φ is

φ̂p ={F̂
T
a .I −Sh.X//T Ĝ

−1
.I −Sh.X// F̂a}−1F̂

T
a .I −Sh.X//T Ĝ

−1
.I −Sh.X// Y: .6/

Let Ŷ
Å =Y − F̂aφ̂p; then

Ŷ
Å ≈m.X/+ e, .7/

and the e′
ijs are uncorrelated. When we estimate the regression function m.x/, we can also

include the observations from the first time point. Therefore, for simplicity of notation, when
estimating m.x/, we assume that Ŷ

Å
consists of all observations with ŷÅ

i1 =yi1. Similar changes
are used for all other notation when estimating m.x/ in approximation (7).

Since the eijs in approximation (7) are uncorrelated, we can use the conventional local linear
regression estimator:

.β̂0, β̂1/=arg min
β0, β1

.Ŷ
Å −Ax0β/TWx0.Ŷ

Å −Ax0β/:

Then the local linear estimate of m.x0/ is m̂.x0, φ̂p/= β̂0.

2.1.1. Bandwidth selection
To implement the newly proposed estimation procedure, we need to specify bandwidths. We
use local linear regression with the working independent correlation matrix to estimate m̂I.·/.
The plug-in bandwidth selector (Ruppert et al., 1995) was applied for the estimation of m̂I.·/.
Then we calculate "̂ij =yij − m̂I.xij/, and further we calculate the difference-based estimate for
φ (Fan and Li, 2004), denoted by φ̂dbe. Using φ̂dbe in model (5), we select a bandwidth for the
proposed profile least squares estimator by using the plug-in bandwidth selector.

2.2. Theoretical comparison
The following notation is used in the asymptotic results below. Let Fi = .Fi1, . . . , FiJ /T, where

Fij = .0T
.j−2/.j−1/=2, "i,1, . . . , "i,j−1, 0T

.J−1/J=2−.j−1/j=2/T,



New Procedure for Non-parametric Regression Function for Longitudinal Data 127

and

μj =
∫

tj K.t/dt,

ν0 =
∫

K2.t/dt:

Denote by fj.x/ the marginal density of X1j. The asymptotic results of the profile least squares
estimators φ̂p and m̂.x0, φ̂p/ are given in the following theorem, whose proof can be found in
Appendix A.

Theorem 1. Supposing that the regularity conditions 1–6 in Appendix A hold, under the
assumption of cov.εi|Xi/=Σ, we have

(a) the asymptotic distribution of φ̂p in estimator (6) is given by

.φ̂p −φ/
√

n→N.0, V−1/,

where

V = 1
J −1

J∑
j=2

E.F1jFT
1j/=d2

j ,

and var.e1j/=d2
j , and

(b) the asymptotic distribution of m̂.x0, φ̂p/, conditioning on {x11, . . . , xnJ}, is given by

{m̂.x0, φ̂p/−m.x0/− 1
2μ2 m′′.x0/h2}√

.Nh/→N {0, ν0=τ .x0/},
where N =nJ and

τ .x0/= 1
J

J∑
j=1

fj.x0/

d2
j

:

Under the same assumption of theorem 1, the asymptotic variance of the local linear estimate
with working independence correlation structure (Lin and Carroll, 2000) is

.Nh/−1ν0

{
1
J

J∑
j=1

fj.x0/σ−2
j

}−1

,

where var."1j/=σ2
j . On the basis of the property of Cholesky’s decomposition, we know that

σ2
1 =d2

1 and σ2
j �d2

j , j =2, . . . , J:

The equality holds only when cov.ε|x/ =Σ is a diagonal matrix. Note that m̂.x0, φ̂p/ has the
same asymptotic bias as the working independence estimate of m.x0/ (Lin and Carroll, 2000).
Therefore, if within-subject observations are correlated (i.e. the covariance matrix Σ is not diag-
onal), then our proposed estimator m̂.x0, φ̂p/ is asymptotically more efficient than the local
linear estimator with the working independence correlation structure.

We next introduce how to use the Cholesky decomposition in model (7) for unbalanced lon-
gitudinal data, and we investigate the performance of the proposed procedure when a working
covariance matrix is used for calculating Ŷ

Å
. We shall show that the resulting local linear estima-

tor is also consistent with any working positive definite covariance matrix, and we further show
that its asymptotic variance is minimized when the covariance structure is correctly specified.

For unbalanced longitudinal data, let εi = ."i1, . . . , "iJi /
T and xi = .xi1, . . . , xiJi /, where Ji is

the number of observations for the ith subject or cluster. Denote cov.εi|xi/ =Σi, which is a
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Ji × Ji matrix and may depend on xi. On the basis of the Cholesky decomposition, there is a
lower triangle matrix Φi with diagonal 1s such that

cov.Φiεi/=ΦiΣiΦ′
i =Di, .8/

where Di is a diagonal matrix. Let φ
.i/
j,l be the negative of the .j, l/-element of Φi. Similarly to

approximation (3), we have, for i=1, . . . , n and j =2, . . . , Ji,

yi1 =m.xi1/+ ei1,

yij =m.xij/+φ
.i/
j,1"̂i,1 + . . . +φ

.i/
j,j−1"̂i,j−1 + eij, .9/

where ei = .ei1, . . . , eiJi /
T =Φiεi. Since Di is a diagonal matrix, the e′

ijs are uncorrelated. There-
fore, if Σi were known, one could adapt the newly proposed procedure for unbalanced longitu-
dinal data.

Following the idea of the GEE (Liang and Zeger, 1986), we replace Σi with a working covari-
ance matrix, which is denoted by Σ̃i, since the true covariance matrix is unknown in practice. A
parametric working covariance matrix can be constructed as in the GEE, and a semiparametric
working covariance matrix may also be constructed following Fan et al. (2007). Let Φ̃i be the
corresponding lower triangle matrix with 1s on the main diagonal such that

Φ̃iΣ̃iΦ̃
′
i = D̃i,

where D̃i is a diagonal matrix. Let φ̃
.i/

j,l be the negative of the .j, l/-element of Φ̃i. Let ỹi1 =yi1 and
ỹij =yij − φ̃

.i/

j,1"̂i,1 − . . . − φ̃
.i/

j,j−1"̂i,j−1. Then our proposed new local linear estimate m̃.x0/= β̃0
is the minimizer of the following weighted least squares:

.β̃0, β̃1/=arg min
β0, β1

n∑
i=1

Ji∑
j=1

Kh.xij −x0/d̃
−2
ij {ỹij −β0 −β1.xij −x0/}2, .10/

where d̃
2
ij is the jth diagonal element of D̃i.

The asymptotic behaviour of m̃.x0/ is given in theorem 2. Following Lin and Carroll (2000)
and Wang (2003), we assume that Ji =J<∞ simplify the presentation of the asymptotic results.
Let φi = .φ

.i/
21, . . . , φ.i/

J ,J−1/T and φ̃i = .φ̃
.i/

21, . . . , φ̃
.i/

J , J−1/T.

Theorem 2. Suppose that the regularity conditions 1–6 in Appendix A hold and
cov.εi|xi/=Σi. Let m̃.x0/ be the solution of equation (10) by using the working covariance
matrix Σ̃i.

(a) The asymptotic bias of m̃.x0/ is given by

bias{m̃.x0/}= 1
2μ2 m′′.x0/h2{1+op.1/}

and the asymptotic variance is given by

var{m̃.x0/}= .Nh/−1 ν0 γ.x0/

τ̃2.x0/
{1+op.1/},

where

τ̃ .x0/= 1
J

J∑
j=1

fj.x0/E.d̃
−2
j |Xj =x0/,

and

γ.x0/= 1
J

J∑
j=1

fj.x0/E{.c2
j +d2

j /d̃
−4
j |Xj =x0},

where c2
j is the jth diagonal element of cov{F.φ̃−φ/|X}:
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(b) The asymptotic variance of m̃.x0/ is minimized only when Σ̃i =kΣi is correctly spec-
ified for a positive constant k. It can then be simplified to

var{m̃.x0/}≈ .Nh/−1ν0

{
1
J

J∑
j=1

fj.x0/E.d−2
j |Xj =x0/

}−1

:

For balanced longitudinal data, if Σi =Σ for all i and does not depend on X, then

var{m̃.x0/}≈ .Nh/−1ν0

{
1
J

J∑
j=1

fj.x0/d−2
j

}−1

: .11/

Theorem 2, part (a), implies that the leading term of the asymptotic bias does not depend on
the working covariance matrix. This is expected since the bias is caused by the approximation
error of local linear regression. Theorem 2, part (a), also implies that the resulting estimate is
consistent for any positive definite working covariance matrix. Theorem 2, part (b), implies that
the asymptotic variance of m̃.x0/ in equation (10) is minimized when the working correlation
matrix is equal to the true correlation matrix. Comparing theorem 1, part (b), with theorem
2, part (b), we know that the proposed profile least square estimate m̂.x0, φ̂p/ for balanced
longitudinal data is as asymptotically efficient as if we knew the true covariance matrix.

It is of great interest to compare the performance of the proposed procedure with the existing
procedures in terms of the asymptotic mean-squared error, which equals the sum of the asymp-
totic variance and the square of the asymptotic bias. As pointed out in Chen et al. (2008), it is
difficult to compare the performance of estimation procedures for longitudinal or clustered data
on the basis of local linear regression. For example, as shown in Wang (2003), her proposal has
the minimal asymptotic variance. This has been further confirmed by the numerical compari-
son in Table 3 given in the next section. However, the asymptotic bias term of Wang’s proposal
cannot be easily evaluated since the bias can only be expressed as the solution of a Fredholm-
type equation. As a result, it is very difficult to evaluate the asymptotic mean-squared errors of
the procedure that was proposed in Wang (2003). From a numerical comparison in Table 1 of
Chen et al. (2008), Wang’s procedure has the minimal variance across all bandwidths used in
the comparison, but the bias of Wang’s procedure is slightly greater than that of other methods.
As a result, her procedure is not always the best in terms of mean integrated squared errors.

It is very difficult to compare the asymptotic variance given in theorem 2 with that for existing
variances under general settings. We shall provide a numerical comparison between the newly
proposed method and existing procedures proposed in Wang (2003), Chen and Jin (2005), Lin
and Carroll (2006) and Chen et al. (2008) in the next section. It is possible to make some com-
parisons for some simple cases. For balanced longitudinal data with Ji = J , denote σjj as the
jth diagonal element of Σ−1. Then the asymptotic variance of Wang’s (2003) estimator can be
written as

.Nh/−1ν0{J−1
J∑

j=1
σjj fj.x0/}−1:

Using the definition of Cholesky’s decomposition, ΦΣΦT =D, it follows that

σjj =d−2
j +

J∑
k=j+1

d−2
k φ2

kj,

which implies that the asymptotic variance given in theorem 2, part (b), is greater than that of
the procedure proposed in Wang (2003). This motivates us to improve the proposed procedure
further. It is known that the Cholesky decomposition depends on the order of within-subject
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Table 1. Comparison of methods for various cases and sample sizes for the balanced
data of example 1 based on 1000 replicates†

Case Method Parameter Results for the following values of n:

n=30 n=50 n=150 n=400

I New Bias 0.076 0.065 0.039 0.028
SD 0.204 0.155 0.094 0.062
RMISE 0.901 0.945 0.985 0.989

I Oracle Bias 0.077 0.065 0.039 0.028
SD 0.190 0.149 0.093 0.062
RMISE 1.000 1.000 1.000 1.000

II New Bias 0.067 0.055 0.035 0.023
SD 0.212 0.162 0.099 0.060
RMISE 1.155 1.194 1.278 1.362

II Oracle Bias 0.065 0.053 0.035 0.023
SD 0.204 0.159 0.098 0.060
RMISE 1.235 1.256 1.294 1.367

III New Bias 0.070 0.054 0.036 0.026
SD 0.199 0.152 0.094 0.060
RMISE 1.127 1.187 1.244 1.256

III Oracle Bias 0.069 0.054 0.035 0.026
SD 0.190 0.149 0.094 0.060
RMISE 1.223 1.232 1.266 1.266

†‘New’ stands for the newly proposed procedure, and ‘oracle’ for the oracle estimator.
Bias is the average of absolute values of biases at 101 grid points. SD is the average of the
standard deviations at 101 grid points. RMISE is the relative MISE between two other
estimators and the working independence method of Lin and Carroll (2000).

observations. Since we can estimate fj.x0/ by using a kernel estimate, assume that fj.x/ is known
for simplicity of presentation. We may estimate D by using "̂ij =yij − m̂I.xij/. This enables us to
estimate the factor J−1 ΣJ

j=1 fj.x0/d−2
j before implementing the proposed profile least squares

procedure. Thus, for balanced longitudinal data and for Σ not depending on X, we may change
the order of within-subject observations (i.e. the order of js) such that J−1 ΣJ

k=1 fjk
.x0/d̃−2

jk
is

as large as possible with respect to the new order {j1, . . . , jJ}, where the d̃2
jk

s are the diago-
nal elements of D in the corresponding Cholesky decomposition. On the basis of our limited
experience, we recommend arranging the order so that d̃

2
1 � . . . � d̃

2
J (i.e. the diagonal elements

of D from largest to the smallest). We shall give a detailed demonstration of this strategy in
example 2.

3. Simulation results and real data application

In this section, we conduct a Monte Carlo simulation to assess the performance of the pro-
file least squares estimator proposed, compare the newly proposed method with some existing
methods and illustrate the newly proposed procedure with an empirical analysis of a real data
example.

3.1. Example 1
This example is designed to assess the finite sample performance of the proposed estima-
tor for both balanced and unbalanced longitudinal data. In this example, data {.xij, yij/, i =
1, . . . , n, j =1, . . . , Ji} are generated from the model
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yij =2 sin.2πxij/+ "ij,

where xij ∼U.0, 1/ and "ij ∼N.0, 1/. Let "i = ."i1. . . "iJi /
T, and xi = .xi1, . . . , xiJi /

T. We consider
the following three cases:

(a) case I, the "′
ijs are independent;

(b) case II, cov."ij, "ik/ equals 0:6, when j �=k and 1 otherwise;
(c) case III, Σi = cov.εi|xi/ is an auto-regressive AR(1) correlation structure with ρ=0:6.

For the balanced data case, we let Ji = J = 6, i = 1, . . . , n. To investigate the effect of errors
in estimating the covariance matrix, we compare the profile least squares procedure proposed
with the oracle estimator by using the true covariance matrix. The oracle estimator serves
as a benchmark for the comparison. In this example, we also compare the newly proposed
procedure with local linear regression using the working independence correlation structure
(Lin and Carroll, 2000). The sample size n is taken to be 30, 50, 100 and 400 to examine the
finite sample performance of the procedure proposed. For each scenario, we conduct 1000
simulations.

Following Chen et al. (2008), we use the the mean integrated squared errors MISE defined
below as a criterion for comparison:

MISE{m̂.·/}= 1
T

T∑
t=1

D̂t , .12/

where T =1000, the number of simulations,

Dt �
∫ 0:9

0:1
{m.x/− m̂t.x/}2 dx

is the integrated squared error for the tth simulation, D̂t estimates Dt by replacing the inte-
gration with summation over the grid points xg =0:1+0:008g .g =0, . . . , 100/ and m̂t.x/ is the
estimate of m.x/ for the tth simulation. Table 1 depicts simulation results. In Table 1 and in the
discussion below, ‘new’ stands for the newly proposed procedure, and ‘oracle’ for the oracle
estimator. Table 1 depicts the relative MISE RMISE, which is defined by the ratio of MISE
for the two other estimators to that for the working independence method of Lin and Carroll
(2000). Thus, if RMISE >1, then the corresponding method performs better than the working
independence method.

Table 1 shows that the new and oracle methods have smaller MISE than the independence
model when the data are correlated (cases II and III) and the gain in efficiency can be achieved
even for moderate sample size. For independent data (case I), the new method does not lose
much efficiency for estimating the correlation structure when compared with the independence
model. Furthermore, Table 1 shows that, when the sample size is large, the new method performs
as well as the oracle method, which uses the true correlation structure. The simulation results
confirm the theoretical findings in Section 2.

Next we assess our proposed estimator for unbalanced longitudinal data. Let Ji, the number
of observations for the ith subject, be the uniform discrete random variable taking values among
{1, 2, . . . , 12}. Since Ji can be different for each i, the data are unbalanced. To see how well the
method proposed can incorporate the within-subject correlation, we first consider the situation
in which the true within-subject correlation structure is known. We transform the correlated
data to uncorrelated data by using expressions (8) and (9). Then we apply the existing local
linear regression to the transformed data with weights d−2

ij , where dij is the jth element of Di

and Di is the diagonal matrix of the Cholesky decomposition of Σi.

ril4
Sticky Note
"the ratio of MISE for ... Lin and Carroll (2000)" should be "the ratio of MISE of the working independence method of Lin and Carroll (2000) to that for the two other estimators."
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Table 2. Comparison of methods for various cases and sample sizes for
the unbalanced data of example 1 based on 1000 replicates†

Case Method Parameter Results for the following values of n:

n=30 n=50 n=150 n=400

Correlation structure is correctly specified
II New Bias 0.058 0.047 0.032 0.024

SD 0.214 0.167 0.101 0.065
RMISE 1.283 1.241 1.304 1.320

II Oracle Bias 0.058 0.047 0.032 0.024
SD 0.213 0.166 0.101 0.065
RMISE 1.294 1.247 1.311 1.322

III New Bias 0.057 0.055 0.036 0.024
SD 0.190 0.151 0.092 0.059
RMISE 1.220 1.246 1.245 1.239

III Oracle Bias 0.056 0.054 0.035 0.024
SD 0.189 0.151 0.092 0.059
RMISE 1.229 1.252 1.248 1.242

Correlation structure is incorrectly specified
II New Bias 0.062 0.050 0.035 0.025

SD 0.224 0.172 0.106 0.068
RMISE 1.167 1.160 1.187 1.206

III New Bias 0.062 0.058 0.037 0.026
SD 0.212 0.168 0.100 0.065
RMISE 1.012 1.043 1.062 1.071

†The methods and definitions of the parameters are the same as for Table 1.

Table 2 shows the comparison results. Since, for the independence case, the newly proposed
method will essentially provide the same result as the working independence procedure, we
report only the results for cases II and III in the top panel of Table 2, from which it can be seen
that the newly proposed procedure works well and provides a better estimator than the working
independence procedure in terms of MISE for unbalanced data.

In practice, it may not be realistic to assume that the correlation structure is known. Thus, it
is of interest to assess the performance of the procedure proposed when the correlation structure
is misspecified. For this, we conduct a simulation by swapping the correlation structures of cases
II and III, i.e. we use an AR(1) correlation structure for case II, and compound symmetric cor-
relation structure for case III. The corresponding simulation results are reported in the bottom
panel of Table 2. As expected, the simulation result implies that the procedure proposed still
has some gain in efficiency over the working independence method, although the gain is not as
much as that with true correlation structure.

3.2. Example 2
In this example, we compare the performance of the procedure proposed with those developed
in Lin and Carroll (2000), Wang (2003), Chen and Jin (2005), Lin and Carroll (2006) and Chen
et al. (2008). Since Chen et al. (2008) made a similar numerical comparison between those
methods, we use the same simulation setting as in Chen et al. (2008) to make a comparison in
this example for fairness. Specifically, the data {.xij, yij/, i=1, . . . , n, j =1, . . . , 4} are generated
from the model

yij =m.xij/+ "ij,
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where m.x/=1−60x exp.−20x2/, xi1 and xi3 are independently generated as U[−1, 1], xi2 =xi1,
xi4 = xi3 and errors ."i1, "i2, "i3, "i4/ are generated from the multivariate normal distribution
with mean 0, correlation 0.6 and marginal variances 0.04, 0.09, 0.01 and 0.16 respectively. The
sample size n=150 and the number of replicates is 1000.

We first illustrate how to change the order of within-subject observations to obtain a smaller
asymptotic variance of the resulting estimate. Note that the fj.x/s are the same for all js. Thus,
we want to change the order of within-subject observations such that J−1 ΣJ

j=1 d−2
j is as large as

possible. Note that the diagonal elements of Σ−1 are (49.1071, 21.8254, 196.4286, 12.2768), and
J−1 ΣJ

j=1 σjj =69:9095, and the corresponding D=diag.0:0400, 0:0576, 0:0055, 0:0815/. Thus,
.d−2

1 , d−2
2 , d−2

3 , d−2
4 / = .25:0000, 17:3611, 181:8182, 12:2768/, and therefore J−1 ΣJ

j=1 d−2
j =

59:1140. Now we put the data from subject i in order as .xi4, yi4/, .xi2, yi2/, .xi1, yi1/, .xi3, yi3/.
The corresponding J−1 ΣJ

j=1 σjj still equals 69:9095, whereas the corresponding D =
diag.0:1600, 0:0576, 0:0220, 0:0051/, .d̃

−2
1 , d̃

−2
2 , d̃

−2
3 , d̃

−2
4 /= (6.2500, 17.3611, 45.4545, 196.4286)

and J−1 ΣJ
j=1d̃−2

j = 66:3736. This implies that we can reduce the asymptotic variance of
the least squares estimate proposed via changing the order of within-subject observations.
In our simulation, we shall change the order of within-subject observation so that d̃2

1 � d̃2
2 � d̃2

3
� d̃2

4.
Following Chen et al. (2008), the curve estimate m̂.x/ is computed on the grid points xg =

−0:8+0:016g, g=0, 1, . . . , 100, with various global fixed bandwidths. Seven different methods
are considered: the working independence method of Lin and Carroll (2000), the one- (first)
step estimation of Wang (2003), the full iterated estimation of Wang (2003), the local linear
method of Chen and Jin (2005), the closed form method of Lin and Carroll (2006), the method
of Chen et al. (2008) and the newly proposed method. The Epanechnikov kernel is used in all
the methods.

We use MISE defined in expression (12) to compare methods. To calculate MISE in this
example, we set

Dt =
∫ 0:8

−0:8
{m.x/− m̂t.x/}2 dx,

and D̂t estimates Dt by replacing the integration with the summation over the grid points
xg =−0:8+0:016g .g =0, . . . , 100/:

Table 3 depicts RMISE, which is defined by the ratio of MISE of the six other estimators
to that for the working independence method of Lin and Carroll (2000). To avoid duplicate
effort and to make a fair comparison, the RMISEs for the procedures that were developed in
Wang (2003), Chen and Jin (2005), Lin and Carroll (2006) and Chen et al. (2008) have been
extracted from Table 1 of Chen et al. (2008). From Table 3, we can see that the procedure that
was proposed in Wang (2003) with full iteration has the smallest variance across all bandwidths,
whereas its bias is greater than that of the newly proposed procedure. In terms of RMISE, the
newly proposed method is comparable with the others for bandwidths 0.02, 0.05 and 0.06,
and outperforms the others for bandwidths 0.03 and 0.04. Note that here the bandwidth 0.04
provides the smallest MISE for all methods.

3.3. Example 3
In this example, we illustrate the methodology proposed with an empirical analysis of a data
set that was collected from the Web site of Pennsylvania–New Jersey–Maryland Interconnec-
tions, which is the largest regional transmission organization in the US electricity market. The
data set includes hourly electricity price and electricity load in the Allegheny Power Service

ril4
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"the ratio of MISE ... Lin and Carroll (2000)" should be the ratio of MISE of the working independence method of Lin and Carroll (2000) to MISE of the six other estimators".
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Table 3. Comparison of methods for various choices of bandwidth based on 1000 replicates†

Method Parameter Results for the following values of h:

h=0.02 h=0.03 h=0.04 h=0.05 h=0.06

Wang’s first Bias 0.029 0.013 0.024 0.038 0.056
SD 0.711 0.082 0.041 0.035 0.035
RMISE 4.900 1.607 1.373 1.027 0.878

Wang’s full Bias 0.027 0.014 0.026 0.040 0.058
SD 0.625 0.076 0.039 0.035 0.035
RMISE 6.068 1.803 1.340 0.949 0.811

Chen and Jin (2005) Bias 0.036 0.012 0.021 0.033 0.048
SD 1.217 0.109 0.049 0.042 0.040
RMISE 1.217 0.786 1.223 1.117 1.064

Lin and Carroll (2006) Bise 0.031 0.012 0.022 0.034 0.049
SD 0.778 0.084 0.041 0.035 0.035
RMISE 3.461 1.158 1.481 1.195 1.057

Chen et al. (2008) Bias 0.027 0.012 0.021 0.033 0.047
SD 0.863 0.093 0.046 0.040 0.038
RMISE 2.876 1.215 1.340 1.178 1.110

New Bias 0.025 0.014 0.023 0.035 0.050
SD 0.624 0.079 0.042 0.037 0.036
RMISE 4.946 2.251 1.712 1.132 1.034

†The definitions of the parameters are the same as for Table 1.

district on each Wednesday of 2005. We studied the effect of electricity load on electricity
price. As an illustration, we treated day as the subject and set the electricity price as the res-
ponse variable and the electricity load as the predictor variable. Thus, the sample size n equals
52, and each subject has J = 24 observations. The scatter plot of observations is depicted in
Fig. 1(b).

We first used local linear regression with working independence covariance matrix to estimate
the regression. The plug-in bandwidth selector (Ruppert et al., 1995) yields a bandwidth of 89.
The broken curves in Fig. 1(b) are the resulting estimate along its 95% pointwise confidence
interval. On the basis of the resulting estimate, we further obtain the residuals and estimate the
correlation between "i,j and "i,j+k for j = 1, . . . , 23 and 1 � k � 24 − j. The plot of estimated
correlations is depicted in Fig. 1(a), which shows that the within-subject correlation is moderate.
Thus, our proposed method may produce a more accurate estimate than local linear regression,
ignoring the within-subject correlation.

Next, we apply the newly proposed procedure to this data set. The bandwidth that is selected
by the plug-in bandwidth selector equals 91. The full curves in Fig. 1(b) are the fitted regression
curves along with 95% pointwise confidence interval for the newly proposed procedure. Fig. 1(b)
shows that the newly proposed procedure provides a smaller confidence interval than the interval
by ignoring the within-subject correlation. In addition, the fitted curve by the method proposed
is much smoother than the working independence local linear fit, because the new method
can borrow information from more observations by taking the correlation into account. From
Fig. 1(b), it can be seen that the relationship between electricity load and electricity price is
non-linear. In general, the price increases as the load increases. However, the price change rate
seems to remain almost constant when the load is 4500–7000, but the price change rate is much
larger when the load is larger than 7500.



New Procedure for Non-parametric Regression Function for Longitudinal Data 135

0 5 10

(a)

(b)

15 20
0

0.2

0.4

0.6

0.8

1

Lag k 

C
or

re
la

tio
n

4500 5000 5500 6000 6500 7000 7500 8000 8500
0

20

40

60

80

100

120

140

160

180

200

220

Load

P
ric

e

Fig. 1. (a) Plot of the estimated correlation between "i ‚j and "i ‚jCk versus the lag k (for example, dots at
k D 1 correspond to the correlations between "i ‚ j and "i ‚ jC1 for j D 1, . . . ,23) and (b) scatter plot of obser-
vations and the plot of fitted regression curves ( , fitted regression by the method proposed and
the corresponding 95% pointwise confidence interval; - - - - - - - , local linear fit ignoring the within-subject
correlation)
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4. Concluding remarks

We have developed a new local estimation procedure for regression functions of longitudi-
nal data. The procedure proposed uses the Cholesky decomposition and profile least squares
techniques to estimate the correlation structure and regression function simultaneously. We
demonstrate that the estimator proposed is as asymptotically efficient as an oracle estimator
which uses the true covariance matrix to take into account the within-subject correlation. In this
paper, we focus on non-parametric regression models. The methodology proposed can be easily
adapted for other regression models, such as additive models and varying-coefficient models.
Such extensions are of great interest for future research.
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Appendix A: Proofs

Define B = F̂a − Fa. Since G can be estimated by a parametric rate, we shall assume that G is known in
our proof, without loss of generality. Our proofs use a strategy which is similar to that in Fan and Huang
(2005). The following conditions are imposed to facilitate the proof and are adopted from Fan and Huang
(2005). They are not the weakest possible conditions.

Condition 1. The random variable xij has a bounded support Ω. Its density function fj.·/ is Lip-
schitz continuous and bounded away from 0 on its support. The xijs are allowed to be correlated for
different js.

Condition 2. m.·/ has the continuous second derivative in x∈Ω.

Condition 3. The kernel K.·/ is a bounded symmetric density function with bounded support and
satisfies the Lipschitz condition.

Condition 4. nh8 →0 and nh2= log.n/2 →∞.

Condition 5. There is an s>2 such that E‖F1j‖s <∞, ∀j, and for some ξ >0 such that n1−2s−1−2ξh→∞.

Condition 6. supx∈Ω|m̂I.x/ − m.x/|= op.n−1=4/, where m̂I.x/ is obtained by local linear regression pre-
tending that the data are independent and identically distributed.

Lemma 1. Under conditions 1–6, we have the following results.

(a) Let Ṽ =J−1ΣJ
j=1E.F1jFT

1j/=d2
j . Then

1
N

F̂
T
a .I −Sh.X//TG−1.I −Sh.X//F̂a

P→ Ṽ:

(b) N−1=2F̂
T
a .I −Sh.X//TG−1.I −Sh.X//m=op.1/ and N−1=2F̂

T
a .I −Sh.X//TG−1.I −Sh.X//Bφ=op.1/:

(c) Let e = .e11, . . . , enJ /T: Then

{F̂
T
a .I −Sh.X//TG−1.I −Sh.X//F̂a}−1F̂

T
a .I −Sh.X//TG−1.I −Sh.X//e

√
N =N.0, Ṽ

−1
/:

The proof of lemma 1 is available from the authors on request.
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A.1. Proof of theorem 1
Let us first show the asymptotic normality of φ̂p. According to the expression of φ̂p in equation (6), we
can break .φ̂p −φ/

√
N into the sum of the following three terms A, B and C:

A={F̂
T
a .I −Sh.X//TG−1.I −Sh.X//F̂a}−1F̂

T
a .I −Sh.X//TG−1.I −Sh.X//m

√
N,

B=−{F̂
T
a .I −Sh.X//TG−1.I −Sh.X//F̂a}−1F̂

T
a .I −Sh.X//TG−1.I −Sh.X//Bφ

√
N,

C ={F̂
T
a .I −Sh.X//TG−1.I −Sh.X//F̂a}−1F̂

T
a .I −Sh.X//TG−1.I −Sh.X//e

√
N:

From lemma 1, parts (a) and (b), the asymptotic properties of these two terms lead to the conclusion that
A=op.1/. Similarly, applying lemma 1, parts (a) and (b), on two product components of term B results in
B =op.1/, as well. In addition, lemma 1, part (c), states that term C converges to N.0, Ṽ

−1
/. Noting that

φ̂p does not use the observations from the first time points, we should replace J by J −1 for φ̂p. Putting
A, B and C together, we obtain the asymptotic distribution of φ̂p.

Next we derive the asymptotic bias and variance of m̂.·/. Note that

m̂.x0, φ̂p/= [1, 0].AT
x0

Wx0 Ax0 /−1AT
x0

Wx0 .m + e +Faφ− F̂aφ̂p/

= [1, 0].AT
x0

Wx0 Ax0 /−1AT
x0

Wx0 .m + e/{1+op.1/}:

Note that E.e|X/=0. Therefore,

bias{m̂.x0, φ̂p/|X}= [1, 0].AT
x0

Wx0 Ax0 /−1AT
x0

Wx0 m{1+op.1/}−m.x0/

= [1, 0].AT
x0

Wx0 Ax0 /−1AT
x0

Wx0

{
m −Ax0 .m.x0/, hm′.x0//

T
}{1+op.1/}:

Similarly to the arguments in Fan and Gijbels (1996), section 3.7, we can prove that the asymptotic bias
is 1

2 m′′.x0/h
2μ2.

In addition, note that

[1, 0].AT
x0

Wx0 Ax0 /−1AT
x0

Wx0 = 1
N τ .x0/

{
Kh.x11 −x0/

d2
1

, . . . ,
Kh.xnJ −x0/

d2
J

}
:

Therefore,

var{m̂.x0, φ̂p/|X}= [1, 0].AT
x0

Wx0 Ax0 /−1AT
x0

Wx0 cov.e/Wx0 Ax0 .AT
x0

Wx0 Ax0 /−1[1, 0]T{1+op.1/}

= 1
Nhτ .x0/

∫
K2.x/dx{1+op.1/}:

Regarding the asymptotic normality,

m̂.x0, φ̂p/−E{m̂.x0, φ̂p/|X}= [1, 0].AT
x0

Wx0 Ax0 /−1AT
x0

Wx0 e{1+op.1/}:

Thus, conditioning on X, the asymptotic normality can be established by using the central limit theorem
since, given j, the e′

ijs are independent and identically distributed with mean 0 and variance d2
j .

A.2. Proof of theorem 2

(a) The proof can be done in a similar way to the proof of theorem 1.
(b) When Σ̃=Σ, we have c2

j =0 and d̃
2
j =d2

j . Hence

var{m̃.x0/|X}≈ .Nh/−1ν0

{
1
J

J∑
j=1

fj.x0/E.d−2
j |Xj =x0/

}−1

:

By noting that

γ.x0/�
{

1
J

J∑
j=1

fj.x0/E.d2
j d̃

−4
j |Xj =x0/

}
, .13/

and
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{

J∑
j=1

fj.x0/E.d2
j d̃

−4
j |Xj =x0/

}
J∑

j=1
fj.x0/E.d−2

j |Xj =x0/�
{

J∑
j=1

fj.x0/E.d̃
−2
j |Xj =x0/

}2

, .14/

we can obtain the result. For result (13), the equality holds only when φ̃=φ. For the second inequality
(14), on the basis of the Cauchy–Schwarz inequality, the equality holds only when d̃j=dj are all equal.
On the basis of the Cholesky decomposition result, φ̃=φ and d̃j=dj are all equal only when Σ̃= kΣ
and thus Σ̃i =kΣi, for some constant k.
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